A Novel Colorimetric Immunoassay Utilizing the Peroxidase Mimicking Activity of Magnetic Nanoparticles
نویسندگان
چکیده
A simple colorimetric immunoassay system, based on the peroxidase mimicking activity of Fe3O4 magnetic nanoparticles (MNPs), has been developed to detect clinically important antigenic molecules. MNPs with ca. 10 nm in diameter were synthesized and conjugated with specific antibodies against target molecules, such as rotaviruses and breast cancer cells. Conjugation of the MNPs with antibodies (MNP-Abs) enabled specific recognition of the corresponding target antigenic molecules through the generation of color signals arising from the colorimetric reaction between the selected peroxidase substrate, 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2. Based on the MNP-promoted colorimetric reaction, the target molecules were detected and quantified by measuring absorbance intensities corresponding to the oxidized form of TMB. Owing to the higher stabilities and economic feasibilities of MNPs as compared to horseradish peroxidase (HRP), the new colorimetric system employing MNP-Abs has the potential of serving as a potent immunoassay that should substitute for conventional HRP-based immunoassays. The strategy employed to develop the new methodology has the potential of being extended to the construction of simple diagnostic systems for a variety of biomolecules related to human cancers and infectious diseases, particularly in the realm of point-of-care applications.
منابع مشابه
DNA Nanotubes Coupled with Magnetic Nanoparticles as a Platform for Colorimetric Biosensors
This study describes the fabrication techniques for two forms of magnetic DNA nanotubes (MDNTs) and their applications as platforms for developing colorimetric assays. The first form of MDNTs was DNTs filled-up with magnetic nanoparticles (MNPs) and the second one was DNTs arayed with MNPs on their extrior surfaces. Then the both forms of MDNTs were employed as platforms for attaching a specifi...
متن کاملAn ultrasensitive DNAzyme-based colorimetric strategy for nucleic acid detection.
An ultrasensitive DNAzyme-based colorimetric DNA detection strategy was developed by utilizing gold nanoparticles modified with both peroxidase-mimicking DNAzymes and capture DNAs and magnetic nanoparticles modified with another capture DNAs, with a detection limit for a model Chlamydia gene of 50 fM.
متن کاملPreparation and characterization of a carbon-based magnetic nanostructure via co-precipitation method: Peroxidase-like activity assay with 3,3ʹ,5,5ʹ-tetramethylbenzidine
Objective(S): Natural and artificial enzymes have shown important roles in biotechnological processes. Recently, design and synthesis of artificial enzymes especially peroxidase mimics has been interested by many researchers. Due to disadvantages of natural peroxidases, there is a desirable reason of current research interest in artificial peroxidase mimics. Metho...
متن کاملFe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent.
Rapid and sensitive detection methods are in urgent demand for the screening of extensively used organophosphorus pesticides and highly toxic nerve agents for their neurotoxicity. In this study, we developed a novel Fe(3)O(4) magnetic nanoparticle (MNP) peroxidase mimetic-based colorimetric method for the rapid detection of organophosphorus pesticides and nerve agents. The detection assay is co...
متن کاملDetermination of microcystin-LR in surface water by a magnetic bead-based colorimetric immunoassay using antibody-conjugated gold nanoparticles
Herein we describe the development of a homogeneous competitive colorimetric immunoassay using antigen-functionalized magnetic beads (MBs) and antibody-immobilized gold nanoparticles (AuNPs) combined with the established gold staining method for the determination of microcystin-leucinearginine (MC-LR) in surface water. Solid phase extraction proved to be the most beneficial sample preparation m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2013